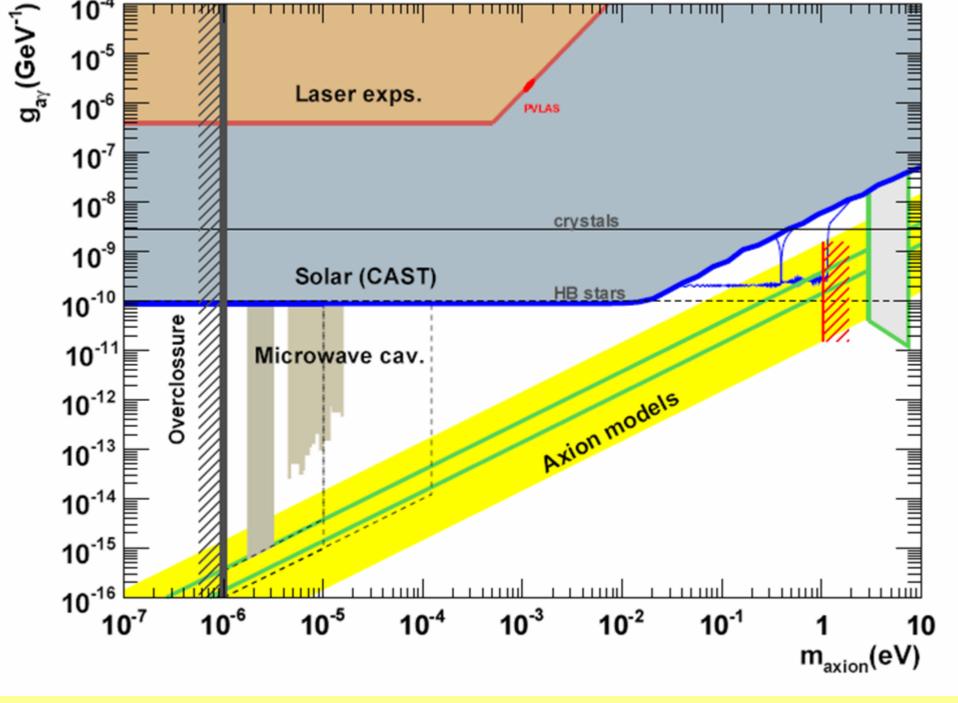
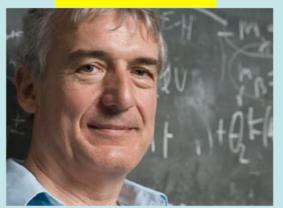
The Sun in the Axion light?

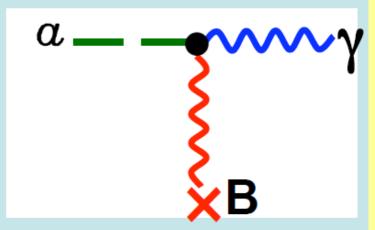
Krzysztof Piotrzkowski

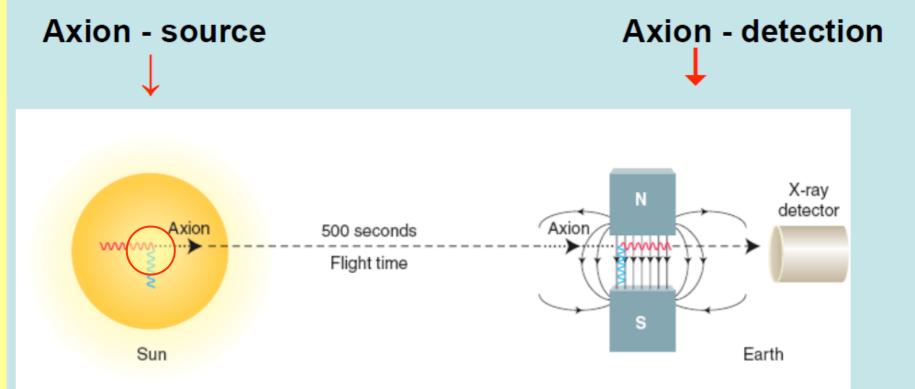
Center for Particle Physics and Phenomenology (CP3), Université Catholique de Louvain

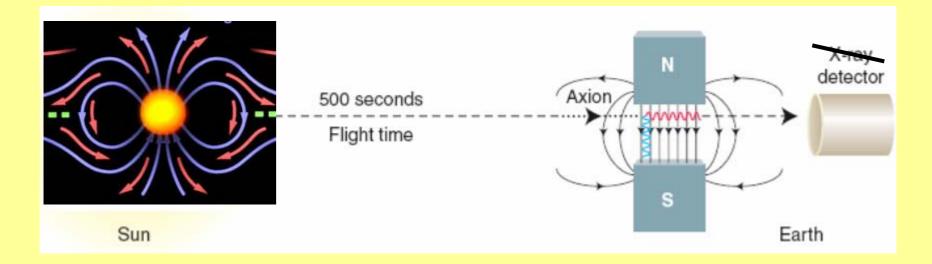


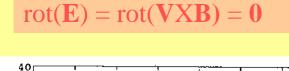
Introduction: PVLAS vs. CAST puzzle
Can CAST tell?
Use of optical sensors
Outlook

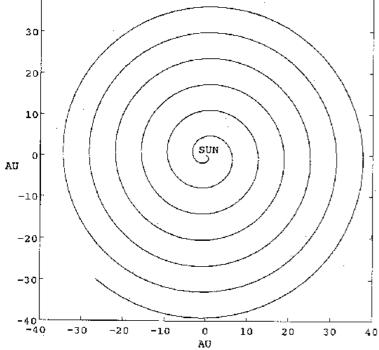

3rd Joint ILIAS–CERN–DESY Axion–WIMPs Training Workshop

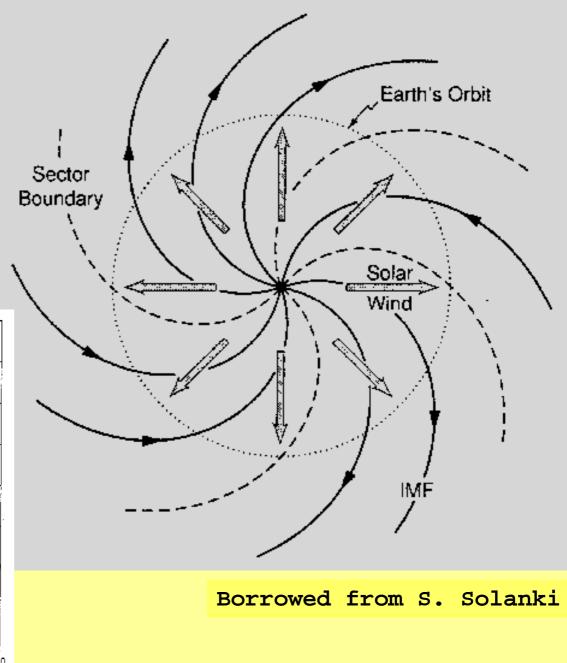

University of Patras / Greece 19-25 June 2007




P. Sikivie


Can one use CAST to test PVLAS more directly?




Proposal: Use the Sun <u>light</u> conversion in its own <u>external</u> magnetic field

Magnetic field near Sun $B_0 \sim 10^{-4}$ T, and drops with distance roughly like $1/r^2 \rightarrow$ calculate effective BL for photon-axion conversions

(Parker) Spiral Interplanetary Magnetic Field

Note: Sunlight photon spectrum peaks at about 0.5 eV - OK for production of ~ 1 meV ALPs suggested by PVLAS!

Problem: Oscillation length $l = 2E/m_A^2$ is only about 0.2 m for $m_A = 1$ meV

Conversion power for PVLAS ALPs is very limited in Sun's external field: effective BL $< 10^{-4}$ Tm; however magnetic fields close to Sun's surface (photosphere) can be much stronger, so assuming tens of Tesla in average, effective BL ~ 10 Tm might be expected Note: In optical domain full Sun's angular size is visible by CAST; and same conditions are for scalar and pseudo-scalar case...

Assuming effective BL = 10 Tm, event rate at CAST for E = 0.5 eV and $g_{a\gamma\gamma}$ = 2.10⁻⁶ GeV⁻¹ can be estimated:

 $N \approx 0.6 \ 2^4 \ N_{\gamma}^{17} \ 10^{-2} \ 0.02^2 \approx \ 0.8 \ events/min,$

where number of photons was obtained assuming 1.4 kW/m² power of sunlight + 100% efficient detector of 20 cm²

CAST might see PVLAS ALPs if equipped with (single photon sensitive) photodetectors!

Using thin mirrors one can make it parasitically, and focus regenerated light on single, small (and low-noise) photosensor.

Note: Coherence condition prefer higher photon energies - rate increases (initially) like E⁴ so UV photons get much higher weight

Good reason to get CAST sensitive in optical/UV

Axion search in general:

Coherence length increases like m_A^{-2} so for very light axions rates are strongly enhanced and Sun's external field becomes relevant...

For example, if $m_A \sim 1 \mu eV$ CAST rate grows about 2.10⁹ times \rightarrow sensitivity to axionphoton coupling increases by about 200...

Finally, for even smaller axion masses like 0.02 μ eV, sensitivity could reach interesting values $g_{a\gamma\gamma} = 2.10^{-10} \text{ GeV}^{-1}$

Another, strong reason to get CAST sensitive in optical

Final remark:

• It might be possible to do PVLAS test all in lab, in one step - it is enough to divide CAST optically in two halves and use some bright light source as a `sun'...

 For white light source, it requires only about 70 W (optical) power to get equivalent event rates:

 $N \approx 0.6 \ 2^4 \ N_{\gamma}^{17} \ 0.02^2 \ 0.02^2 \approx 0.8 \ events/min$...and one can still increase rate by using UV source, or/and higher power, and can modulate it to suppress/subtract backgrounds...

Summary/Outlook

• It is possible to test directly PVLAS ALPs interpretation using CAST, by equipping it with sensors sensitive in optical wavelengths, either by looking at the Sun, or by using a bright light source in 'lab-only setup'

• More importantly, if CAST is sensitive in optical domain, axion search can be extended by independent search using Sun's external magnetic field for conversion of sunlight, reaching effective BL \approx 500 Tm (for m_A = 0.2 µeV)!

