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Ultra-high resolution x-ray optics require extremely @
precise, smooth substrates and reflective thin films =
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» Wolter | design, 0.5 arcsec resolution
» Zerodur substrates

« 300 A Ir reflective coatings with a 50 A Cr
binding layer
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The main challenge is to demonstrate and maintain the required

optical surface quality in the figure, mid- and high- spatial frequencieE

Visible light interferometry results from multilayer-
coated, diamond-turned condenser mirror
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Polyimide smoothes high spatial frequency
roughness, including 10 um-range diamond
turning marks

Diamond-turned Aluminum surface, Diamond-turned Aluminum surface, after
as-received from manufacturer polyimide and Mo/Si multilayer coating

Measurements obtained with a Zygo New View™ optical profiling
microscope operated at 40x objective lens magnification
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Physics / performance requirements determine the
specifications in each spatial frequency range

Precision surface metrology at LLNL on candidate Si substrates for the x-ray
optics beamline at the LCLS free-electron laser
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Our group at LLNL has been developing next generation x-ray _q
optics for plasma physics, astronomy and medical applications =
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Resolution vs. energy comparison of high-
efﬂmency reflective X ray systems
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Hard x-ray mirrors: the need for reflective multilayer
coatings

Index of refraction for high-energy photons is given by

n=1- o+ig.

Total external reflection of light occurs when the incident angle is less than
the critical angle 8= 26

Critical angle drops rapidly with energy 6.~ E 2,

Incredibly difficult to achieve significant effective area above 10 keV with
single layers of any material.

Instead, rely on multilayers to achieve high-reflectivity beyond 6.
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Multilayer interference coatings

81 layers

o Bragg equation for multilayers:
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Depth-graded multilayers at grazing incidence greatly extend
the efficiency / energy range of hard x-ray optics

« Bragg’slaw: m 4= 2d sin6
mAA = 2Ad sin0

« Allow d to vary as a function of depth,
satisfying the Bragg equation over a

range of A
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Thermally formed, segmented glass substrates have
been developed at LLNL

Slump 0.2mm-thick flat panel Coat glass with ~ few hundred layers
display glass in ovens (2.5-10nm each) of WI/SiC, Pt/SiC to
extend energy band

Segmented glass substrate approach is:
* Inexpensive
* Has convenient geometry for reflective coating

- Demonstrated 2—4 A high-spatial frequency roughness, ~60 arcsec figure

Acknowledgements: Caltech University, Columbia University, DNSC
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Thermally formed, segmented glass substrates have been
implemented successfully in the HEFT hard x-ray telescope

Assemble the glass into an optic A completed HEFT optic with

using graphite and epoxy. 72 layers made up from 1440
individual mirrors (20-70 keV)

* W. W. Craig et al, “Development of thermally formed glass optics for astronomical hard X-ray
telescopes,” Opt Express, 7, 178-185, (2000).

* J. E. Koglin; C. M. H. Chen; J. C. Chonko, F. E. Christensen, W. W. Craig, T. R. Decker, C. J. Hailey, F.
A. Harrison, C. P. Jensen, K. K. Madsen, M. J. Pivovaroff, M. Stern, D. L. Windt, E. Ziegler, “Hard x-ray
optics: from HEFT to NuSTAR”, SPIE 5488, 856-867 (2004).

Acknowledgements: Caltech University, Columbia University, DNSC
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Thermally formed, full-revolution polycarbonate
substrates have been developed at LLNL

Polycarbonate substrate
approach:

» Enables fabrication of x-ray
substrates with small radius

 Inexpensive, lightweight,
versatile

 For soft x-ray applications: Full-revolution shells (Combined with
appropriate reflective coating process) greatly ease alignment, allow
simple integration into highly-nested system

*For_hard X-ray applications: Segment shells into smaller pieces for
multilayer deposition and integration into optics using established
techniques
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Polycarbonate integral shells demonstrate 50” figure E

FHWM: 87" HPD: 50"
_' LI PR FERL ) PR S PSR N SIS T ) I, T ] | '_ 1[:] — T
TR = -
: 5
g . " = 08 ]
o [ a I
P a0 | g i
O Tt B oosp 5
E - ; i
o g I
ﬂ : -; 0.4 =
c 40 F & 0 g
— B -3
= !
= ] £ 02 :
-3
()
D....II...II. P a1 [:II[:I|||||||IIIIIII|||||I||||-
-400 <200 0 200 400 0 50 100 150 200 250

Angular Distribution [arcse(] Radial Distance [arcsec]

Measurements performed at 8.05 keV (Cu Ka) at DNSC

Regina Soufli et al., 06/22/06



Polycarbonate substrates demonstrate high-spatial _@
frequency roughness < 3 A =
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An x-ray collimator can improve the sensitivity of the E
CAST experiment

LLNL optic improves
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Design of LLNL x-ray collimator based on novel _@
polycarbonate substrates for CAST Micromegas detector| —

L+

@ =0’, spot size =2 mm

¢ = 3’, spot size =4 mm
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Conical approximation of Wolter | (no
imaging needed, only concentration of x-
rays)

14 nested shells, each 125 mm long
0,=0.22°, R ;;; = 9.4 mm, R, = 9.9 mm
0,=0.53°% R, =22.3 mm, R, = 23.5 mm
Each shell interior coated with ~ 300 A Ir

Distance from front of optic to detector is
1.3 m

Outer shell is larger than magnet bore to
allow for error in alignment.



Optic completed in August 2006 E

| 11 (out of 14) Ir-coated
polycarbonate shells in
LLNL cleanroom lab, prior
to assembly

Assembled optic _ _
] Vacuum pipe with
Entrance aperture Exit aperture adjustment mechanisms




Optic installed at PANTER

PN CCD (flight
spare from XMM)

Test stand that holds optic PSPC gas detector (flight spare from ROSAT)
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PSF measurements at PANTER (1)

3

Once we know the optimal position for the focal plane, study PSF at five energies

pixels
-100 -50 0 +50 +100

+10 C Ka: 0.28 keV

+100

+5
+50

Y [mm]
sjexid

-50
5
-100
-10
-0 5 0 45 +10
X [mm]
B T
0 335 669 1004 1338 1673

Regina Soufli et al., 06/22/06

pixels
-100 50 0 +50 +100

+10 Al Ka: 1.49 keV

+100

+5
+50

Y [mm]
sjexid

-50
5
-100
-10
-0 5 0 45 +10
X[mm)]
T TN 1
0 92 184 275 367 459




PSF measurements at PANTER (2)

pixels
~-100 -50 0 +50 +100 _
+10 Ti Ka: 4.51 keV
+100
+5
+50
't T,
€ o 0 X
— vy
-50
5
-100
-10
' 45 +10
261 348 435

Regina Soufli et al., 06/22/06

+10

+5

-10

e

pixels

-100 -50 0 +50 +100

Cu Ka: 8.05 keV

+100

+50

=
sjoxid

-50

-100

110 5 0 45 +10

83 165 248 330 413



PSF analysis HE

« Scattering more pronounced at higher energies, as
expected from theory (1/A% dependence)

« Core sharpens at higher energies
« Quter shells have low efficiency at higher energies

— Indicates these shells have different properties that
iInner portion of optic

— Consistent with properties inferred from focal length
measurements

Regina Soufli et al., 06/22/06



Encircled energy analysis

« Scattering (higher energies) and geometric errors (lower energies)

balance each other
— Spot size is essentially independent of energy

Energy [keV] 0.28 0.93 1.49 4,51 8.05
50% diameter 3.9 mm 3.8 mm 3.9 mm 3.8 mm 3.9mm
75% diameter 6.8 mm 6.7 mm 6.8 mm 6.6 mm 6.8 mm
90% diameter 121mm | 119mm |[120mm | 11.9mm | 12.1mm

3

 HPD is about 2.5% larger than original predictions, 90% energy circle

3% larger

« Three factors at play:
— Different focal lengths (geometric errors)
— Mid-spatial frequency errors (coatings process)

— Misalignment of shells (£30 arcsec) with respect to one another
(fabrication process)
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Effective area analysis E

. Factors that contribute to losses
1.  Geometric errors reduce area at all energies

2. Rougher and non-ideal coating reduces area across entire band
pass

3. Putative contamination layer primarily absorbs low energy photons

8

Preliminary speculation
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Coating the interior surface of small-radius, full-
revolution x-ray substrates is a very challenging task

T

Before optimizatin After optimization

Ir-coated CAST radius no. 4,
2x2 ym?, ¢ =47 A rms 2x2 uym?, edge1,c=11.6 A rms

*Ir coating was performed by outside vendor using Pulsed Laser Deposition
(PLD), guided by surface characterization at LLNL (AFM, SEM, optical
profilometry)

* Even after roughness optimization, coating quality varied among shells and
across length of a single shell

 Sensitivity of polycarbonate material to thermal effects during Ir deposition

is difficult to manage
Regina Soufli et al., 06/22/06



Performance of x-ray optic with Micromegas detector ||_:z I

* Optic was successfully integrated into new beamline
« Optic did focus light on Micromegas

 Exercise was incredibly valuable learning
experience: learned several lessons that will be
integrated into future efforts

Regina Soufli et al., 06/22/06



Follow-on analysis to understand and improve optic M
performance o

« X-ray Photoelectron Spectroscopy (LLNL, CERN) to
determine composition of surface contamination

 Already have results from witness coupons
prepared during Ir coating

« Complete interpretation requires results from
additional samples, including actual optic

* Iridium film contains IrO,, hydrocarbons, nitrogen
compounds and trace amounts of Si

* Precise measurements of substrates to design new
tooling to correct geometric errors

Regina Soufli et al., 06/22/06



Plans forward nE

« Complete metrology of prototype CAST x-ray optic

— Study contamination and quantify geometric errors in
detall

« Develop work plan to correct geometric errors

« Consider and pursue other coating options to improve
surface finish (roughness)
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Conclusions n_’_g

* We understand behavior of x-ray optic

« Confident we can build a 2" x-ray optic that will behave much closer
to expected (and needed) performance

» Our resources are limited, but we are continuing our development
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