## Anomalies and vacuum effects in strong magnetic fields

**Oleg Ruchayskiy** 



**Alexey Boyarsky** 



3rd Joint ILIAS-CERN-DESY workshop on Axion-WIMPs

Patras, June 23, 2007

#### Outline

- lacksquare Search for particles that couple to  $F ilde{F}=rac{1}{2}\epsilon^{\mu
  u\lambda
  ho}F_{\mu
  u}F_{\lambda
  ho}=4ec{E}\cdotec{H}$
- lacksquare Anomalies as origin of the coupling to  $F ilde{F}$
- Models with extra dimensions and their low energy signatures
- Theories with anomaly inflow
- Examples
  - Anomalous electrodynamics
  - Anomalous SM
- Current experimental restrictions
- Anomalies and new vector fields

#### Axion and axion-like particles

- New symmetry was suggested by Peccei-Quinn as a solution of the strong CP-problem
- It implied the existence of the new particle axion

Weinberg'77 Wilczek'77

■ More generally, axion-like particles (ALP) is a pseudoscalar

$${\cal L}_{ extsf{ALP}} = rac{1}{2} (\partial_{\mu} a)^2 - rac{m_a^2}{2} a^2 + rac{a}{4M} \epsilon^{\mu
u\lambda
ho} F_{\mu
u} F_{\lambda
ho}$$

One can search for ALPs in parallel electric and magnetic fields



#### Triangular diagrams and anomalies

- Triangular fermionic loops give rise to **anomalies** violation of a classical symmetry at the quantum level.
- Anomaly of a global symmetry leads to new physics (ABJ anomaly: decay of  $\pi^0 \to 2\gamma$ , axion coupling to  $F\tilde{F}$ )



$$\langle \partial_{\mu} \langle j^{\mu} 
angle = rac{e^3}{16\pi^2} \epsilon^{\mu
u\lambda
ho} F_{\mu
u} F_{\lambda
ho}$$

#### Gauge anomalies. Loss of unitarity

- The same type of diagram can lead to nonconservation of the gauge current — gauge anomaly
- If a theory contains **chiral fermions** it can happen that gauge symmetry of classical theory is violated by quantum corrections



$$\langle \partial_{\mu}\langle j^{\mu}
angle = rac{e_L^3 - e_R^3}{16\pi^2} \, \epsilon^{\mu
u\lambda
ho} F_{\mu
u} F_{\lambda
ho} = rac{e_L^3 - e_R^3}{4\pi^2} (ec E \cdot ec B)$$

■ Anomaly of gauge symmetry leads to the loss of unitarity in a theory:

 $k^{\mu}A_{\mu} \neq 0$  - longitudinally polarized photon appears in the spectrum



#### Gauge anomalies make theory inconsistent

Maxwell equations need conserved current

$$\partial_{\mu}F^{\mu\nu} = j^{\nu} \quad \Rightarrow \quad \partial_{\mu}j^{\mu} = 0$$

.

- Normally current conservation is guaranteed by gauge symmetry.
- On quantum level one has

$$\partial_{\mu}F^{\mu
u}=\langle j^{
u}
angle$$

■ If  $\partial_{\mu}\langle j^{\nu}\rangle \neq 0$  – the theory becomes inconsistent

Standard Model does contain chiral fermions.

# How such a theory can be consistent?

#### Anomaly cancellation in SM

- lacksquare Several chiral fermions can help each other:  $\partial_{\mu}\langle j^{\mu}_{\psi}+j^{\mu}_{\chi}
  angle=0$
- It may happen that one group of chiral fermions is much heavier than the other  $(m_{\psi} \ll m_{\chi})$ .
- Example:  $m_{\rm bottom} \sim 5~{\rm GeV} \ll m_{\rm top} \sim 174~{\rm GeV}$ . However, SM *without* t-quark is **anomalous** gauge invariance is broken at quantum level and the theory would lose unitarity.
- lacktriangle How does cancellation works at energies  $m_\psi \ll E \ll m_\chi$  ?

#### D'Hoker-Farhi current

- Usual logic of effective field theories tells us that contributions from Appelquist, heavy particles are suppressed as powers of  $E/m_\chi$  ("Decoupling Corazzone'75 theorem")
- Terms like  $\epsilon^{\mu\nu\lambda\rho}F_{\mu\nu}F_{\lambda\rho}$  have dimensionless couplings do not depend on mass of fermions producing them.
- Heavy chiral fermions can produce quantum corrections to the D'Hoker-current, not suppressed by their mass

$$j^{\mu}_{ extsf{DF}} \sim \epsilon^{\mu
u\lambda
ho} rac{\phi^* \overleftrightarrow{D}_{
u} \phi}{|\phi|^2} F_{\lambda
ho}$$

- $\phi$  Higgs field. This current survives even as  $|\phi| \to \infty$
- D'Hoker-Farhi current is not conserved:

$$\partial_{\mu}j^{\mu}_{ exttt{DF}}\sim\epsilon^{\mu
u\lambda
ho}F_{\mu
u}F_{\lambda
ho}$$

#### Observational signatures of anomalies

- Anomaly analysis gives information about the high energy physics
- For example, the discovery of *b*-quark strongly hinted at existence of the *t*-quark (no matter how heavy it would be)!
- Can the anomalous currents a là D'Hoker-Farhi, produced by some heavy particles, be observed at low energy?
- There are 2 possibilities
  - Sum of anomalous currents cancels:  $j_{\psi}+j_{\chi}=0$
  - Sum of divergences of anomalous currents cancels:

$$\partial_{\mu}\langle j_{\psi}^{\mu}+j_{\chi}^{\mu}
angle=0$$
, while  $j_{\psi}+j_{\chi}
eq0$ 

#### Example: higher-dimensional current

Consider a theory of 4+1 dimensional fermions interacting with a topological defect.

$$S = \int d^4 x \, dz \, \sum_{f=1}^2 ar{\Psi}_f(x) \Big( i D\!\!\!\!/_{\!\!f} + m_f(z) \Big) \Psi_f(x) \, .$$

The fermionic mass has a "kink-like" structure in the 5th direction

- Fermions in the bulk are vector-like and massive. Chiral zero modes propagate only in 3+1
- At low energies there are only chiral zero modes, which produce 4-dimensional anomalous current
- How the gauge invariance of full 5-dimensional theory is restored?

#### Anomaly inflow

■ Massive bulk modes produce a current, flowing towards the brane: Faddeev,

Faddeev, Shatashvili'84 Callan, Harvey'85

$$J^z \sim \epsilon^{\mu
u\lambda
ho} F_{\mu
u} F_{\lambda
ho}$$

- anomaly inflow current
- Similarly to the D'Hoker-Farhi current it is not suppressed by the mass of bulk fermions
- $lacksquare \partial_z J^z + \partial_\mu j^\mu_{\mathsf{z.m.}} = 0$ , but obviously  $J + j_{\mathsf{z.m.}} 
  eq 0$

This current corresponds to the **Chern-Simons** term in the 5-dimensional effective action:

$$\int\!A\wedge F\wedge F=\int\!\epsilon^{abcde}A_aF_{bc}F_{de}$$
 Extra dimensions Inflow current

Inflow

Topological term. Does not contain metric and dimensionful constants

Brane with zero modes

#### Anomalous Extensions of SM

- Choice of hypercharges in SM is controlled by Yukawa interaction.
- This fixes hypercharge assignments up to two constants:  $\kappa_l$  in lepton sector and  $\kappa_q$  in quark sector.

| $e_L$         | $e_R$         | $oldsymbol{ u}_L$ | $oldsymbol{Q}_L$        | $oldsymbol{u_R}$         | $d_R$                             | $ u_R$     |
|---------------|---------------|-------------------|-------------------------|--------------------------|-----------------------------------|------------|
| $-1+\kappa_l$ | $-2+\kappa_l$ | $-1+\kappa_l$     | $rac{1}{3} + \kappa_q$ | $\frac{4}{3} + \kappa_q$ | $-rac{2}{3}+oldsymbol{\kappa_q}$ | $\kappa_l$ |

These constants are usually chosen to be zero to ensure that SM is anomaly free:

$$\partial_{\mu}j_{Y}^{\mu}=rac{ ext{Tr}[Y^{3}]}{16\pi^{2}}\epsilon_{\mu
u\lambda
ho}F_{Y}^{\mu
u}F_{Y}^{\lambda
ho}+rac{ ext{Tr}[Y_{L}]}{16\pi^{2}}\epsilon^{\mu
u\lambda
ho}\operatorname{Tr}_{SU(2)}G_{\mu
u}G_{\lambda
ho}$$

where 
$$\mathrm{Tr}[Y^3]=6(\kappa_l+3\kappa_q)$$
 and  $\mathrm{Tr}[Y_L]=-2(\kappa_l+3\kappa_q)$ 

- lacksquare Experimentally  $\kappa_l + 3\kappa_q = rac{e-p}{e} < 10^{-21}$
- This number is small but may be non-zero if SM is a sector a bigger theory. For example, a theory with extra dimensions

#### Vector-like Electrodynamics

- Arbitrary choice of parameters  $\kappa_l, \kappa_q$  leads to anomaly of hypercharge current.
- However, for any choice of hypercharges, electrodynamics remains vector-like and anomaly-free
- If SM is expanded by some additional 4-dim fields, it may happen that the electrodynamics will also become chiral
- If the theory contains additional U(1) 4-dim fields, there can mixed anomaly. These anomalies of SM can be canceled by inflow from extra dimensions
- What are the consequences of the presence of inflow currents from the point of view of the low energy physics on a brane?

#### Manifestations of Anomaly Inflow?

- $\blacksquare$  Experimentally electric neutrality of matter is confirmed to a very high precision  $(\frac{e-p}{e} < 10^{-21})$
- What if still  $\frac{e-p}{e} \neq 0$ ?
- What will the 4-dimensional observer detect?
  - Flux of particles from higher dimensions? ← Wrong!
  - Five-dimensional transversal photon:  $k^\mu A_\mu + k^5 A_5 = 0$  but  $k^\mu A_\mu \neq 0$ ?  $\leftarrow$  Wrong!
- The inflow current is a vacuum current not carried by real particles. It is caused by a redistribution of the charges in the Dirac sea of the full theory, leads to an appearance of an electric charge on the brane.

#### Anomalous Electrodynamics

Consider again our simplest example of anomalous electrodynamics on a domain wall in 4+1 dimensions (z – coordinate of 5th dim)

$$S = -rac{1}{4e_5^2}\int\!\Delta(z)F\wedge\star F + rac{1}{4}\int\!\kappa(z)A\wedge F\wedge F + \int\!d^4x\,\mathcal{L}_{matter}$$
 Solution Solution Anomaly inflow interaction Anomalous theory:  $\partial_\mu j^\mu \sim F ilde F$ 

Factor  $\Delta(z) = \exp(-2M|z|)$  is responsible for localization of the al. 2000; gauge fields on a brane

Oda 2000; Dubovsky et al. 2000; Shaposhnikov Tinyakov 2001

Without CS this action would describe a 4-dim theory for E < M

Normalizable zero mode of gauge fields:  $\partial_z F_{\mu\nu} = 0, \quad F_{\mu z} = 0$ 

#### Equations of motion

Set of non-linear 5-dimensional Maxwell-like equations:

$$egin{align} \partial_b \Big( \Delta(z) F^{\mu b} \Big) &= e_5^2 \Big( J_{ exttt{CS}}^\mu + j_{ exttt{SM}}^\mu \Big) & a,b = 0,\dots,4 \ \Delta(z) \partial_\mu F^{z\mu} &= e_5^2 J_{ exttt{CS}}^z & \mu = 0,\dots,3. \end{split}$$

$$J_{ ext{CS}}^{\mu}=3\kappa(z)\epsilon^{\mu
u\lambda
ho}F_{z
u}F_{\lambda
ho}$$
 $J_{ ext{CS}}^{z}=rac{3}{4}\kappa(z)\epsilon^{\mu
u\lambda
ho}F_{\mu
u}F_{\lambda
ho}$ 

Inflow current  $J_{CS}$  cancels anomaly on the brane:

$$\partial_{\mu}J^{\mu}_{ extsf{CS}} + \partial_{z}J^{z}_{ extsf{CS}} + \partial_{\mu}j^{\mu}_{ extsf{SM}} = 0$$

Plane wave propagating in the strong magnetic field  $H_x \approx \text{const}$  and  $\kappa_0 \ll 1$ . For the wave with parallel to  $\vec{H}$  polarization

Boyarsky, O.R 2007

$$rac{1}{\Delta(z)}\partial_z \Big(\Delta(z)\partial_z A_x\Big) + \Box A_x = \underbrace{rac{lpha_{ t EM}^2 \kappa_0^2 ec{H}^2}{M_5^2 \Delta^2(z)} A_x} + \mathcal{O}(\kappa_0)$$

CS term, non-perturbative in  $\kappa_0$ !

- $\star$  Massive wave equation  $\Box A_x(x) m_{\gamma H}^2 \, A_x(x) = 0$
- $\star$  Mass  $m_{\gamma H}^2 \sim lpha_{
  m EM} \kappa_0 |ec{H}|$  depends only on 4-dim quantities. It is not suppressed by the scale of 5th dimension  $M_5$
- $\star$  Massless wave equation for perpendicular to the magnetic field component  $\Box A_y(x) = 0$
- \* This leads to the **ellipticity** (birefringence) of the linearly polarized light  $\Delta\phi = \frac{m_{\gamma H}^2}{2\omega} L \sim \frac{\kappa_0 \alpha_{\rm EM} |\vec{H}|}{2\omega} L$

#### Ellipticity in anomalous electrodynamics

- Ellipticity also appears in theories where photon interacts with ALPs, millicharged particles, etc. or due to the QED corrections to the electrodynamics Lagrangian
- Signatures of anomalous electrodynamics differ from these examples
- Unlike theories with ALP, here there is **no** dichroism (rotation of polarization plane) in this theory, as there are **no new light degrees of freedom**. There is also no "light shining through the wall"
- Ellipticity in our case is proportional to the  $|\vec{H}|$  (unlike QED or ALP cases, where ellipticity  $\sim \vec{H}^2$ ). This is a **signature** of non-local (higher-dimensional) physics
- lacktriangle The dependence of ellipticity on the optical path  $m{L}$  is linear (unlike in the theories with ALPs)

## Photon mass $m_{\gamma H}^2 \sim \kappa_0 |ec{H}|$ ?...

- Furry theorem in QED: any diagram with odd number of external photon legs is zero (CP-symmetry).
- lacktriangle QED corrections to Maxwell theory  $\mathcal{L} = -rac{1}{4}F_{\mu
  u}^2 + rac{14\,lpha_{ ext{EM}}^2}{45\,m_e^4}(ec{E}ec{H})^2 + \ldots$
- The Euler-Heisenberg Lagrangian gives ellipticity but does not lead to the photon mass. Static (capacitor) experiment would give no results
- Once  $\kappa_0 \neq 0$  there is no Furry theorem as  $e_L \neq e_R$ . Anomalous triangular diagram exists and leads to a pole in the photon propagator with  $m_{\gamma H}^2 \sim \kappa_0 \alpha_{\rm EM} |\vec{H}|$



There is also another experimental setup, which can observe anomaly inflow and distinguish 5-dimensional theory from its 4-dimensional counterparts

#### Static solution in magnetic field

Static solution in strong magnetic field  $\vec{H} \approx {
m const}$  and  $\kappa_0 \ll 1$  to one equation for the electrostatic potential  $\Phi(x,z) = \phi(x)\chi(z)$ :

Boyarsky, O.R.,

$$\frac{1}{\Delta(z)}\partial_z \Big(\Delta(z)\partial_z \Phi\Big) + \vec{\nabla}^2 \Phi = \underbrace{\frac{\alpha_{\rm EM}^2 \, \kappa_0^2 \, \vec{H}^2}{M_5^2 \, \Delta^2(z)}}_{\text{Source charge}} + \underbrace{e_5^2 \rho(x) \delta(z)}_{\text{Source charge}} + \mathcal{O}(\kappa_0) \overset{\text{Shaposhnikov}}{\text{PRD 2005}}$$

CS term, non-perturbative in  $\kappa_0$ 



- Effective Poisson equation:
- $\star \vec{\nabla}^2 \phi(x) m_{\gamma H}^2 \phi(x) = \alpha_{\text{EM}} \rho(x)$
- \* Electric field gets screened as if photon had become massive
- $\star$  Mass  $m_{\gamma H}^2 = \alpha_{\sf EM} \kappa_0 |\vec{H}|$  depends only on 4-dim quantities - finestructure constant  $lpha_{\sf FM}$ and magnetic field  $ec{H}$  as measured on the brane.

#### Anomalous $\gamma \gamma Z$ Coupling

In SM there can be only  $\gamma \gamma Z$  anomalies. The analysis gets messy

$$\partial_{\mu}j_{\scriptscriptstyle \mathsf{Z}}^{\mu} = -rac{4N_f\left(\kappa_l+3\kappa_q
ight)}{\pi^2\sin2 heta_W}ec{E}_{\gamma}\cdotec{H}_{\gamma}\;;\;\;\partial_{\mu}j_{\gamma}^{\mu} = -rac{8N_f(\kappa_l+3\kappa_q)}{\pi^2\sin2 heta_W}(ec{E}_{\gamma}\cdotec{H}_{\scriptscriptstyle \mathsf{Z}}+ec{E}_{\scriptscriptstyle \mathsf{Z}}\cdotec{H}_{\gamma})$$

- lacksquare A background (capacitor) with  $ec{E} \cdot ec{H} 
  eq 0$  creates an inflow of Z current
- Anomalous density of Z charge creates Z field and non-trivial \( \gamma \) background
- Non-trivial  $\gamma$ Z background leads to

#### inflow of electro-magnetic current

 Anomalous distribution of electric charge on the brane is created and electric field is modified as if photon has acquired mass

$$m_{\gamma H}^2 = rac{2N_f e_4^2 |ec{H}|}{\pi^2 \sin 2 heta_W} \left(\kappa_l + 3\kappa_q
ight)$$

does not depend on  $m_7$  or  $M_5$ !

#### Setup of static experiment

- In the SM  $\kappa \lesssim 10^{-21}$  which leads to the  $m_{\gamma H} \lesssim 10^{-10}$  eV for the magnetic field 10 Tesla.
- Idea N° 1: if one "turns on" mass for the photon, the capacitance of a system would change  $\Rightarrow$  Create an RC-circuit, turn on strong magnetic field and measure the shift of capacitance. The change of capacitance  $\frac{\Delta C}{C} \sim m_{\gamma H}$ . Possible to measure shift of capacitance with femtoFarad ( $10^{-3}$ pF) precision and thus masses  $m_{\gamma H}\gtrsim 10^{-8}$  eV
- Idea N° 2: Attraction force between two charged parallel plates (ideal capacitor) can be measured with nanoNewton precision. Can probe mass range  $m_{\gamma H} \gtrsim 10^{-11}$  eV.
- Tentative limit on measurements of deviation from the Gauss law  $\sim 10^{-14} \; \mathrm{eV}$
- lacksquare Unique signature  $m_{\gamma H} \sim \sqrt{|ec{H}|}$

#### Example 2: New vector field and CS terms

- In the SM model fermions have both vector and axial couplings to gauge fields (e.g.  $e^{\pm}$  interaction with electromagnetic and Z field)
- Imagine an extension of the SM where some fermions (either SM or new ones) interact with both photon  $A_{\mu}$  and new gauge field  $B_{\mu}$

Antoniadis, Boyarsky, O.R 2006

Anomalous triangular diagram induces 4dim Chern-Simons-like coupling between two fields:



$$\mathcal{L}_{\text{CS}} = \kappa \epsilon^{\mu 
u \lambda 
ho} A_{\mu} B_{
u} \partial_{\lambda} A_{
ho}$$

We obtain an effective theory

$$\mathcal{L} = -rac{1}{4}|F_A|^2 - rac{1}{4}|F_B|^2 + rac{m_B^2}{2}|d heta + B|^2 + \kappa A \wedge B \wedge F_A + \kappa heta F_A \wedge F_A$$

#### Longitudinal component at low energies

$$\mathcal{L} = -rac{1}{4}|F_A|^2 - rac{1}{4}|F_B|^2 + rac{m_B^2}{2}|d heta + B|^2 + \kappa A \wedge B \wedge F_A + \kappa heta F_A \wedge F_A$$

- The theory is gauge invariant with respect to variation of the  $B_{\mu} \to B_{\mu} + \partial_{\mu} \lambda$  and  $\theta = \theta \lambda$ .
- However,  $B_{\mu}$  couples to the current which is **not conserved**:

$$J_B^\mu = rac{\delta \mathcal{L}}{\delta B_\mu} = \kappa A \wedge F_A; \qquad \partial_\mu J_B^\mu = \kappa F_A \wedge F_A$$

lacktriangle Longitudinal component of the B-field does not decouple and behaves as ALP with mass  $m_B$  and coupling  $M_{\mathsf{ALP}} = rac{m_B}{\kappa}$ 

#### Longitudinal component at high energies

- If there is an additional massive particle (with  $mass\ m_0$ ), interacting with  $A_\mu$  and  $B_\mu$ , for  $E>m_0$  effective Lagrangian becomes non-local
- lacksquare Now  $B_{\mu}$  couples to the **conserved** current

$$J_B^\mu = rac{\delta \mathcal{L}}{\delta B_\mu} = \kappa A \wedge F_A + \kappa rac{\partial}{\Box} F_A \wedge F_A$$

Antoniadis, Boyarsky, O.R., to appear

■ For example, fermions with mass  $m_0$  will produce the following term in the effective action

$$\mathcal{L}_{\psi} = \kappa \left( heta rac{m_0^2}{\Box + m_0^2} - \partial_{\mu} B^{\mu} rac{1}{\Box + m_0^2} 
ight) F_A \wedge F_A$$

- lacktriangle At energies  $E\gtrsim m_0$  the production of the longitudinal polarization is suppressed as  $(m_B/E)^2$
- If  $1 \text{ eV} < m_0 < 1 \text{ keV}$  we will have effects in laboratory but not in stars!

#### Conclusion

- There is a wide range of models where anomaly analysis predicts new phenomena in parallel electric and magnetic fields.
- Some of these models predict effects in strong magnetic fields, but do not introduce new light particles. Thus no stellar constraints, no contradictions to CAST bounds, etc.
- Experiments (such as PVLAS, ALPS, OSQAR, BMV, ...) can also **probe for the signatures** of these theories (and e.g. discover extra dimensions!)
- Apart from optical experiments (measuring ellipticity and dichroism) and "light shining through the wall", there is an alternative approach to probe for these theories – static "capacitor" experiment

Thank you for your attention!

## The End

#### Anomalies in SM on D-branes

■ Appearance of additional anomalous U(1) groups is a generic Ibanez, feature in D-brane constructions of SM

Rabadan, Uranga'98

Anomalous parameter can have arbitrary values

Antoniadis. Kiritsis. Rizos'02

■ Effects, similar to those, appearing in SM can be induced via anomalous  $\gamma \gamma \gamma'$  coupling.

Antoniadis. Boyarsky, O.R in progress

■ This may produce the low-energy string theory signature not suppressed by string scale  $M_s$ ?!

#### Conclusion

- In theories with **anomaly inflow** the electric charge, placed in a magnetic field, gets screened. This **low-energy** effect can serve as a **signature of extra dimensions**.
- Modern experimental data shows that our world is non-anomalous with a very high precision. However, with these restrictions in mind the effect can be pronounced enough to be detected.
- Any higher-dimensional theory should either present a mechanism ensuring that the brane world is non-anomalous or explain a finetuning of the hypercharges.
- Anomalous U(1) couplings generically appear in string vacua. Possible experimental tests of string theory?

#### STATIC SOLUTION

Five coupled non-linear equations reduce for  $\vec{H} \approx \text{const}$  and  $\kappa_0 \ll 1$  to one equation for the electrostatic potential  $\Phi(x, z) = \phi(x)\chi(z)$ :

$$\partial_z \Big(\Delta(z)\partial_z\Phi\Big) + \Delta(z) ec{
abla}^2 \Phi = \underbrace{ rac{lpha_{ t EM}^2 \kappa_0^2 ec{H}^2}{M_5^2 \Delta(z)} \Phi}_{ t CS \; {
m current}} + \underbrace{e_5^2 q(x) \delta(z)}_{ t source \; {
m charge}} + \mathcal{O}(\kappa_0)$$

non-perturbative in  $\kappa_0$ !

#### **BULK THEORY**

A model of localization of both fermions and gauge fields.

$$S = -rac{1}{4e_5^2} \int d^5 x \, \Delta(z) F_{ab}^2 + \int d^5 x \, \sum_{f=1}^2 ar{\Psi}_f(x) \Big( i D\!\!\!\!/_f + m_f(z) \Big) \Psi_f(x).$$

There are two fermions  $\Psi_{1,2}$ , interacting with the gauge field with the different charges:  $D_f = \partial + \frac{e_f}{e_5} A$ ,  $e_1 \neq e_2$ . The fermionic mass terms  $m_1(z) = -m_2(z)$  have a "kink-like" structure in the direction z:  $m_1(z \to \pm \infty) \to \pm m_{\psi}$ .

#### MASSES FOR FERMIONIC ZERO MODES

The only way to make the electro-dynamics anomalous is to take left and right moving fermions with different electric charges. Thus one can only introduce a mass term via the Higgs mechanism with an electrically charged Higgs field:

$$S_\phi = \int d^5x \left[ \left| D_a \phi 
ight|^2 - m_\phi^2(z) |\phi|^2 - rac{\lambda}{4} |\phi|^4 + f ar{\Psi}_1 \Psi_2 \phi + ext{h.c.} 
ight] \; ,$$

where  $D_{\mu}\phi=i\partial_{\mu}\phi+(\frac{e_L}{e}-\frac{e_R}{e})A_{\mu}\phi$  and the Higgs mass  $m_{\phi}^2(z)$  is negative at z=0 and tends to the positive constant in the bulk, as  $|z|\to\infty$ .

#### **EFFECTIVE FIELD THEORIES AND "DECOUPLING THEOREM"**

The usual logic behind **effective field theories**: integration of massive fields only leads to renormalization of charges and fields, while all additional interaction suppressed by some positive power of E/M. ["Decoupling theorem" Appelquist, Corazzone'75]

Question: if the mass scale of extra dimensions is much bigger than our present energies — can one still expect to see any low energy signatures?

Yes! The "decoupling theorem" does not always hold. The most famous counterexample: theories, with **Chern-Simons-like** interactions.[Redlich'83]

■ In 2+1 dimensions:

$$\log \det (i \gamma^{\mu} \partial_{\mu} + M + e \gamma^{\mu} A_{\mu}) = rac{e^2}{8 \pi^2} \epsilon^{\mu 
u \lambda} A_{\mu} \partial_{
u} A_{\lambda} + \ldots$$

- Chern-Simons term survives even as  $M \to \infty$ !
- True in any odd space-time dimensions.
- What about 3+1 dimensions?

### $U(1)^3$ and $U(1) imes SU(2)^2$ anomaly

$$oxed{U(1)^3}: \; \partial_{\mu}j_Y^{\mu} = rac{ ext{Tr}[Y^3]}{16\pi^2}\epsilon_{\mu
u\lambda
ho}F_Y^{\mu
u}F_Y^{\lambda
ho} + rac{ ext{Tr}[Y_L]}{16\pi^2}\epsilon^{\mu
u\lambda
ho}\operatorname{Tr}_{SU(2)}G_{\mu
u}G_{\lambda
ho}$$

$$U(1) imes SU(2)^2 \;:\; D^\mu j^lpha_\mu = rac{{
m Tr}[Y_L]}{8\pi^2} \epsilon^{\mu
u\lambda
ho} G^lpha_{\mu
u} F_{\lambda
ho}$$

#### SIGNATURES OF EXTRA DIMENSIONS

- New particles ("KK towers") appear. SM particles disappear into bulk. High-energy signatures: only at energies above the mass gap.
- Certain theories lead to a modification of Newtons's law at sub-mm scales low-energy signature[Arkani-Hamed,Dimopoulos,Dvali'98]
- Theories with **anomaly inflow:** special type of brane-bulk interaction, **not suppressed** by a mass gap. Low-energy signatures? [This talk]

 $\partial_z ig( \Delta(z) \partial_z \Phi_\gamma ig) + \Delta(z) 
abla^2 \Phi_\gamma = -e_5^2 ig( q(x) \delta(z) + j_{ extsf{DF}}^0 + J_{ extsf{CS},\gamma}^0 ig) \; ,$ 

 $\partial_z ig(\Delta(z) F^{xz}ig) + rac{\Delta(z)}{2} \partial_r ig(r F^{xr}ig) = e_5^2 ig(j_{ extsf{DF}}^x + J_{ extsf{CS},\gamma}^xig) \;,$ 

Equations for 
$$\gamma$$
 field

Equations for Z field

$$\begin{cases} \partial_z \left( \Delta(z) F^{rz} \right) + \Delta(z) \partial_x F^{rx} &= e_5^2 \left( j_{\mathrm{DF}}^r + J_{\mathrm{CS}, \gamma}^r \right), \\ \partial_z \left( \Delta(z) F^{\theta z} \right) + \Delta(z) \partial_x F^{\theta x} + \frac{\Delta(z)}{r} \partial_r \left( r F^{\theta r} \right) &= e_5^2 \left( j_{\mathrm{DF}}^\theta + J_{\mathrm{CS}, \gamma}^\theta \right), \\ \Delta(z) \left( \partial_x F^{xz} + \frac{1}{r} \partial_r \left( r F^{rz} \right) \right) &= -e_5^2 J_{\mathrm{CS}, \gamma}^z, \\ \partial_z \left( \Delta(z) \Phi_{\mathrm{Z}} \right) + \Delta(z) \nabla^2 \Phi_{\mathrm{Z}} - e_5^2 m_{\mathrm{Z}}^2(z) \Phi_{\mathrm{Z}} &= -e_5^2 \left( q_{\mathrm{Z}}(x) \delta(z) + j_{\mathrm{DF}, \mathrm{Z}}^0 + \mathcal{J}_{\mathrm{CS}, \mathrm{Z}}^0 \right), \\ \partial_z \left( \Delta(z) \mathcal{F}^{xz} \right) + \frac{\Delta(z)}{r} \partial_r \left( r \mathcal{F}^{xr} \right) - e_5^2 m_{\mathrm{Z}}^2(z) \mathcal{A}^x &= e_5^2 \left( j_{\mathrm{DF}, \mathrm{Z}}^x + \mathcal{J}_{\mathrm{CS}, \mathrm{Z}}^x \right), \\ \partial_z \left( \Delta(z) \mathcal{F}^{rz} \right) + \Delta(z) \partial_x \mathcal{F}^{rx} - e_5^2 m_{\mathrm{Z}}^2(z) \mathcal{A}^r &= e_5^2 \left( j_{\mathrm{DF}, \mathrm{Z}}^r + \mathcal{J}_{\mathrm{CS}, \mathrm{Z}}^r \right), \\ \partial_z \left( \Delta(z) \mathcal{F}^{\theta z} \right) + \Delta(z) \partial_x \mathcal{F}^{\theta x} + \frac{\Delta(z)}{r} \partial_r \left( r \mathcal{F}^{\theta r} \right) - e_5^2 m_{\mathrm{Z}}^2(z) \mathcal{A}^\theta &= e_5^2 \left( j_{\mathrm{DF}, \mathrm{Z}}^\theta + \mathcal{J}_{\mathrm{CS}, \mathrm{Z}}^\theta \right), \\ \Delta(z) \left( \partial_x \mathcal{F}^{xz} + \frac{1}{r} \partial_r (r \mathcal{F}^{rz}) \right) + e_5^2 m_{\mathrm{Z}}^2(z) \mathcal{A}^z &= -e_5^2 \mathcal{J}_{\mathrm{CS}, \mathrm{Z}}^z. \end{cases}$$

back to  $\gamma \gamma Z$ 

#### **EXPERIMENTAL DETECTION?**

| Model               | $\kappa_0$ | $m_{\gamma H}$ , GeV | $	au_0$ , sec      | $oldsymbol{L_0}$ , cm | $E_{out}/E_0$   |
|---------------------|------------|----------------------|--------------------|-----------------------|-----------------|
| new generation      | 1          | $10^{-8}$            | $3 	imes 10^{-16}$ | $10^{-5}$             | 0               |
| charged $ u$        | $10^{-15}$ | $4 	imes 10^{-16}$   | $10^{-8}$          | $3	imes10^2$          | $\sim 1$        |
| electric neutrality | $10^{-21}$ | $4	imes10^{-19}$     | $10^{-5}$          | $3	imes10^5$          | $\sim 10^{-3}$  |
| massive $\gamma$    | $10^{-36}$ | $10^{-26}$           | $3	imes10^2$       | $10^{13}$             | $\sim 10^{-10}$ |

 $au_0 \sim 1/m_{\gamma H}$  — characteristic time over which the electric field reaches its final state.

 $E_{out}$  — the value of the electric field outside the plates of a capacitor at distances much smaller than  $L_0 \sim 1/m_{\gamma H}$ .

An initial value of electric field  $E_0 \sim 10^7$  Volt/m, magnetic field  $H \sim 10^5$  Gauss, the distance between the plates  $d=10^2$  cm.

#### **TOC**

| Outline                                                 | 1 |
|---------------------------------------------------------|---|
| Axion and axion-like particles                          | 2 |
| Triangular diagrams and anomalies                       | 3 |
| Gauge anomalies. Loss of unitarity                      | 4 |
| Gauge anomalies make theory inconsistent                |   |
| Anomaly cancellation in SM                              | 7 |
| D'Hoker-Farhi current                                   | 8 |
| Observational signatures of anomalies                   | 9 |
| Example: higher-dimensional current1                    | 0 |
| Anomaly inflow                                          | 1 |
| Anomalous Extensions of SM                              | 2 |
| Vector-like Electrodynamics                             | 3 |
| Manifestations of Anomaly Inflow?1                      | 4 |
| Anomalous Electrodynamics                               | 5 |
| Equations of motion1                                    | 6 |
| Light propagation in magnetic field                     | 7 |
| Ellipticity in anomalous electrodynamics                |   |
| Photon mass $m_{\gamma H}^2 \sim \kappa_0  ec{H} $ ? 19 | 9 |

#### **TOC**

| Static solution in magnetic field                  | 21 |
|----------------------------------------------------|----|
| Anomalous $\gamma \gamma Z$ Coupling               |    |
| Setup of static experiment                         |    |
| Example 2: New vector field and CS terms           | 24 |
| Longitudinal component at low energies             | 25 |
| Longitudinal component at high energies            | 26 |
| Conclusion                                         | 27 |
| Anomalies in SM on D-branes                        | 29 |
| Conclusion                                         | 30 |
| Static solution                                    | 31 |
| Bulk theory                                        | 32 |
| Masses for fermionic zero modes                    | 33 |
| Effective field theories and "decoupling theorem"  | 34 |
| Integrating out massive fermions in odd dimensions | 35 |
| $U(1)^3$ and $U(1) 	imes SU(2)^2$ anomaly $\dots$  | 36 |
| Signatures of Extra Dimensions                     | 37 |
|                                                    | 38 |
| Experimental Detection?                            | 39 |

#### TOC

| TO  |   |      |  |      |  |  |  |      |      |  |  |      |  |  |  |  |  |  |  | A       |          |
|-----|---|------|--|------|--|--|--|------|------|--|--|------|--|--|--|--|--|--|--|---------|----------|
| 1() |   |      |  |      |  |  |  |      |      |  |  |      |  |  |  |  |  |  |  |         | LII      |
|     | V | <br> |  | <br> |  |  |  | <br> | <br> |  |  | <br> |  |  |  |  |  |  |  | <br>. – | $\Gamma$ |