Low-Energy Photons as a Probe of Weakly Interacting Sub-eV Particles

Andreas Ringwald

3rd ILIAS-CERN-DESY Axion-WIMP Workshop June 21, 2007 Patras, GR

0. Introduction

• Large Hadron Collider (LHC) will probe physics at the TeV scale at an unprecedented level

0. Introduction

 Large Hadron Collider (LHC) will probe physics at the TeV scale at an unprecedented level

 Origin of particle masses?

0. Introduction

- Large Hadron Collider (LHC) will probe physics at the TeV scale at an unprecedented level
 - Origin of particle masses?
 - Nature of dark matter? Neutralinos as Weakly Interacting Massive Particles (WIMPs)?

0. Introduction

- Large Hadron Collider (LHC) will probe physics at the TeV scale at an unprecedented level
 - Origin of particle masses?
 - Nature of dark matter? Neutralinos as Weakly Interacting Massive Particles (WIMPs)?
- Experiments exploiting lowenergy photons and/or large electromagnetic fields may yield complementary information on physics at the sub-eV scale
- Weakly Interacting Sub-eV
 Particles (WISPs): axions,
 paraphotons, minicharged
 particles, ...?
 A. Ringwald (DESY)

[Ahlers (unpubl.)]

Outline:

1. Low-Energy Electromagnetic Interactions of WISPs

WISPs interact with photons via quantum fluctuations

2. Laser Polarization Experiments

WISPs may lead to vacuum magnetic dichroism and birefringence

3. Light-Shining-Through-Walls Experiments

Photons may convert to neutral WISPs which traverse walls and reconvert into photons behind the latter

4. Dark-Current-Flowing-Through-a-Wall Experiment

Minicharged WISPs may be produced in strong electric fields, traverse a wall and may be detected as dark current behind the latter

6. Conclusions

 Photons interact with WISPs via quantum fluctuations into new, very heavy particles or string excitations Photon-Paraphoton

 $\gamma \sim$ $\lor \gamma'$ $\bigvee \bigvee \checkmark$

Photon-Axion/Dilaton

 Photons interact with WISPs via quantum fluctuations into new, very heavy particles or string excitations

Photon-Paraelektron

Photon-Paraphoton

Photon-Axion/Dilaton

$$\gamma \bigvee \sum_{\substack{\gamma \\ \gamma}} - - - - \phi$$

A. Ringwald (DESY)

 Photons interact with WISPs via quantum fluctuations into new, very heavy particles or string excitations

Photon-Paraelektron

Photon-Paraphoton

Photon-Axion/Dilaton

A. Ringwald (DESY)

- Photons interact with WISPs via quantum fluctuations into new, very heavy particles or string excitations
- ⇒ Size of interactions gives information about hidden sector (masses, couplings, size of extra dimensions)
- ⇒ Precision experiments with sizeable electromagnetic fields (laser, strong magnetic or electric fields) allow searches for effects of WISPs

Photon-Paraphoton

Photon-Paraelektron

Photon-Axion/Dilaton

A. Ringwald (DESY)

2. Laser Polarization Experiments

- Linearly polarized laser beam along transverse magnetic field:
 - Real conversion of laser photons in WISPs

$$\gamma \sim S = - - - \phi$$

Photon $\rightarrow AI P$.

Photon \rightarrow Paraphoton

2. Laser Polarization Experiments

- Linearly polarized laser beam along transverse magnetic field:
 - Real conversion of laser photons in WISPs ⇒ Rotation of polarization, since conversion probability depends on relative orientation between polarization and magnetic field direction

[Ahlers (unpubl.)]

2. Laser Polarization Experiments

- Linearly polarized laser beam along transverse magnetic field:
 - Real conversion of laser photons in WISPs ⇒ Rotation of polarization, since conversion probability depends on relative orientation between polarization and magnetic field direction
 - Virtual conversion of laser photons in WISPs

2. Laser Polarization Experiments

- Linearly polarized laser beam along transverse magnetic field:
 - Real conversion of laser photons in WISPs ⇒ Rotation of polarization, since conversion probability depends on relative orientation between polarization and magnetic field direction
 - Virtual conversion of laser photons in WISPs ⇒ elliptical polarization, since phase velocity depends on relative orientation between polarization and magnetic field

[Ahlers (unpubl.)]

A. Ringwald (DESY)

- Linearly polarized laser beam along transverse magnetic field:
 - Real conversion of laser photons in WISPs ⇒ Rotation of polarization, since conversion probability depends on relative orientation between polarization and magnetic field direction
 - Virtual conversion of laser photons in WISPs ⇒ elliptical polarization, since phase velocity depends on relative orientation between polarization and magnetic field

BFRT experiment: [Cameron *et al.* '93] (Brookhaven, Fermilab, Rochester, Trieste)

$$B \sim 2 \text{ T}, \ell = 8.8 \text{ m}, \omega = 2.4 \text{ eV}, N_{\text{pass}} = 34 - 254$$

PVLAS experiment: [Zavattini *et al.* '06] $B = 5 \text{ T}, \ell = 1 \text{ m}, \omega = 1.2 \text{ eV}, N_{\text{pass}} = 44000$

Q&A experiment:[Chen, Mei, Ni '06]
$$B = 2.3 \text{ T}, \ell = 1 \text{ m}, \omega = 1.2 \text{ eV}, N_{\text{pass}} = 18700$$

A. Ringwald (DESY)

• No signal in **BFRT**

BFRT experiment

Rotation	(L=8.8 n	n, $\lambda=514.5$ nm, $ heta=rac{\pi}{4})$
$N_{ m pass}$	$ \Delta \theta $ [nrad]	$\Delta heta_{ m noise} [{ m nrad}]$
254	0.35	0.30
34	0.26	0.11
Ellipticity	$(L=8.8$ m, $\lambda=514.5$ nm, $ heta=rac{\pi}{4})$	
$N_{ m pass}$	$ \psi $ [nrad]	$\psi_{ m noise}\left[m nrad ight]$
578	40.0	11.0
34	1.60	0.44
Regen. $(L = 4.4 \text{ m}, \langle \lambda \rangle = 500 \text{ nm}, N_{\text{pass}} = 200)$		
$ heta\left[\mathrm{rad} ight]$	rate [Hz]	
0	-0.012 ± 0.009	
$\frac{\pi}{2}$	0.013 ± 0.007	
		[Cameron <i>et al</i> '93]

15

- No signal in BFRT
- Signal in PVLAS

PVLAS experiment Rotation $(L = 1 \text{ m}, N_{\text{pass}} = 44000, \theta = \frac{\pi}{4})$ λ [nm] $\Delta \theta$ [10^{-12} rad/pass] 1064 $(\pm ?)3.9 \pm 0.2$ 532 $+6.3 \pm 1.0$ (preliminary) Ellipticity($L = 1 \text{ m}, N_{\text{pass}} = 44000, \theta = \frac{\pi}{4}$) λ [nm] ψ [10^{-12} rad/pass] 1064 -3.4 ± 0.3 (preliminary) 532 -6.0 ± 0.6 (preliminary)

[PRL '06; IDM '06; NT '07]

2. Laser Polarization Experiments

- No signal in BFRT
- Signal in PVLAS
- No signal in Q&A

Q&A experiment		
Rotation($L=1$ m, $\lambda=1064$ nm, $ heta=rac{\pi}{4}$)		
$N_{ m pass}$	$\Delta heta [\mathrm{nrad}]$	
18700	-0.4 ± 5.3	
	[Q&A coll. '06]	

2. Laser Polarization Experiments Effects of Nearly Massless, Spin

- Interpretation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP)),

$$(g/4) \phi^{(-)} F_{\mu
u} ilde{F}^{\mu
u} \left(\phi^{(+)} F_{\mu
u} F^{\mu
u}
ight)$$
a)

Effects of Nearly Massless, Spin Zero Particles on Light Propagation in a Magnetic Field

2. Laser Polarization Experiments *Polarized Light Propagating in a*

- Interpretation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP))
 and /or

and/or

- light MiniCharged Particle (MCP)
 - anti-particle pair,
 - $\partial_{\mu} \rightarrow \partial_{\mu} i\epsilon e A_{\mu}$

Magnetic Field as a Probe for Millicharged Fermions [Gies, Jaeckel, AR '06]

A. Ringwald (DESY)

- Interpretation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP)),

$$(g/4) \phi^{(-)} F_{\mu\nu} \tilde{F}^{\mu\nu} \left(\phi^{(+)} F_{\mu\nu} F^{\mu\nu} \right)$$

If interpreted in terms of ALP:


```
    Published data:
pure ALP or pure MCP ok
```

 Preliminary data: pure ALP and pure MCP 0 ruled out; pure MCP 1/2 ok; MCP 1/2 plus ALP 0⁺ preferred

[Ahlers, Gies, Jaeckel, AR '06]

- Interpretation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP)),

$$(g/4) \phi^{(-)} F_{\mu\nu} \tilde{F}^{\mu\nu} \left(\phi^{(+)} F_{\mu\nu} F^{\mu\nu} \right)$$

If interpreted in terms of ALP:


```
    Published data:
pure ALP or pure MCP ok
```

 Preliminary data: pure ALP and pure MCP 0 ruled out; pure MCP 1/2 ok; MCP 1/2 plus ALP 0⁺ preferred

[Ahlers,Gies,Jaeckel,AR '06]

2. Laser Polarization Experiments If interpreted in terms of MCP:

- Interpretation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP))
 and/or
 - light MiniCharged Particle (MCP)
 - anti-particle pair,

$$\partial_{\mu} \to \partial_{\mu} - \mathrm{i}\epsilon e A_{\mu}$$

- Published data: pure ALP or pure MCP ok
- Preliminary data: pure ALP and pure MCP 0 ruled out; pure MCP 1/2 ok; MCP 1/2 plus ALP 0⁺ preferred

[[]Ahlers, Gies, Jaeckel, AR '06]

A. Ringwald (DESY)

2. Laser Polarization Experiments If interpreted in terms of MCP:

- Interpretation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP))
 and/or
 - light MiniCharged Particle (MCP)
 - anti-particle pair,

$$\partial_{\mu} \to \partial_{\mu} - \mathrm{i}\epsilon e A_{\mu}$$

- Published data: pure ALP or pure MCP ok
- Preliminary data: pure ALP and pure MCP 0 ruled out; pure MCP 1/2 ok; MCP 1/2 plus ALP 0⁺ preferred

2. Laser Polarization Experiments If interpreted in terms of MCP:

- Interpretation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP))
 and/or
 - light MiniCharged Particle (MCP)
 - anti-particle pair,

$$\partial_{\mu} \to \partial_{\mu} - \mathrm{i}\epsilon e A_{\mu}$$

- Published data: pure ALP or pure MCP ok
- Preliminary data: pure ALP and pure MCP 0 ruled out; pure MCP 1/2 ok; MCP 1/2 plus ALP 0⁺ preferred


```
[Ahlers,Gies,Jaeckel,AR '06]
```

A. Ringwald (DESY)

2. Laser Polarization Experiments Distinguishing ALPs from MCPs:

- Interpretation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP))
 and/or
 - light MiniCharged Particle (MCP)
 - anti-particle pair,

$$\partial_{\mu} \rightarrow \partial_{\mu} - \mathrm{i}\epsilon e A_{\mu}$$

- Published data: pure ALP or pure MCP ok
- Preliminary data: pure ALP and pure MCP 0 ruled out; pure MCP 1/2 ok; MCP 1/2 plus ALP 0⁺ preferred

OSQAR (CERN): 9.6 T LHC magnet

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (Paraphotons, ALPs) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

LSW via

• photon-paraphoton oscillations:

• photon-ALP oscillations:

3. Light-Shining-Through-Walls Experiments

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (Paraphotons, ALPs) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

[Ahlers (unpubl.)]

• Linearly polarized laser beam in Experiment Laser Cavity Magnets $B_1 = B_2 = 5 T$ vacuum or along a transverse ALPS 532 nm; 200 W $\ell_1 = \ell_2 = 4.21 \text{ m}$ $\bar{B}_1 = \bar{B}_2 = 3.7 \text{ T}$ magnetic field BFRT ~ 500 nm; 3 W $N_{\rm D} = 200$ $\frac{\ell_1 = \ell_2 = 4.4 \text{ m}}{\text{B}_1 = \text{B}_2 = 11 \text{ T}}$ $8 \times 10^{21} \gamma$ /pulse **BMV** $\ell_1 = \ell_2 = 0.25 \text{ m}$ • Place wall in beam pipe: $B_1 = B_2 = 5 T$ GammeV 532 nm: 3.2 W $\ell_1 = \ell_2 = 3 \text{ m}$ $B_1 = B_2 = 1.7 \text{ T}$ LIPSS - laser beam will be absorbed 900 nm; 3 kW $\frac{\ell_1 = \ell_2 = 1 \text{ m}}{\text{B}_1 = \text{B}_2 = 9.5 \text{ T}}$ OSQAR - neutral WISPs (Paraphotons, $N_{\rm p} \sim 10^4$ 1064 nm; 1 kW $\ell_1=\ell_2=7~\text{m}$ $B_1 = 5 T, \ell_1 = 1 m$ ALPs) fly through wall and **PVLAS** $N_{\rm D} = 4 \times 10^4$ $B_2 = 2.2 T_1$ 1064 nm; 0.02 W reconvert on other side of wall into photons, which can $\ell_2 = 0.5 \text{ m}$ be detected \Rightarrow Test pure ALPs interpretation of [Okun '82;Sikivie '83;Anselm '85;..]

PVLAS

- Pioneering experiment: **BFRT**
- Several ongoing experiments
- A. Ringwald (DESY)

 \Rightarrow Improve limits on paraphotons

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (Paraphotons, ALPs) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments A. Ringwald (DESY)

Vacuum LSW: Limit on paraphoton

- Linearly polarized laser beam in vacuum or along a transverse magnetic field
- Place wall in beam pipe:
 - laser beam will be absorbed
 - neutral WISPs (Paraphotons, [€]
 ALPs) fly through wall and
 - reconvert on other side of wall into photons, which can be detected

[Okun '82;Sikivie '83;Anselm '85;..]

- Pioneering experiment: BFRT
- Several ongoing experiments
- A. Ringwald (DESY)

 $B \neq 0$ LSW: Masso-Redondo model

[Ahlers, Gies, Jaeckel, Redondo, AR '07]

$B \neq 0$ LSW: Masso-Redondo model

[Ahlers, Gies, Jaeckel, Redondo, AR '07]

- Minicharged particles don't meet again behind the wall ⇒ no light shining through the wall
- Current-Through-a-Wall:
 - In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
 - MCP beam leaves cavity and is flowing through thick wall
 - Corresponding electrical current can be measured directly via its induced magnetic field

[Gies, Jaeckel, AR '06]

32

- Minicharged particles don't meet again behind the wall ⇒ no light shining through the wall
- Current-Through-a-Wall:
 - In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
 - MCP beam leaves cavity and is flowing through thick wall
 - Corresponding electrical current can be measured directly via its induced magnetic field

[Gies, Jaeckel, AR '06]

- Minicharged particles don't meet again behind the wall ⇒ no light shining through the wall
- Current-Through-a-Wall:
 - In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
 - MCP beam leaves cavity and is flowing through thick wall
 - Corresponding electrical current can be measured directly via its induced magnetic field

[Gies, Jaeckel, AR '06]

[Ahlers (unpubl.)]

A. Ringwald (DESY)

- Minicharged particles don't meet again behind the wall ⇒ no light shining through the wall
- Current-Through-a-Wall:
 - In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
 - MCP beam leaves cavity and is flowing through thick wall
 - Corresponding electrical current can be measured directly via its induced magnetic field

ACDC (Accelerator Cavity Dark Current):

• Cavity available

[Gies, Jaeckel, AR '06]

A. Ringwald (DESY)

- Minicharged particles don't meet again behind the wall \Rightarrow no light shining through the wall
- Current-Through-a-Wall:
 - In strong electric field of accelerator cavity, minicharged particles may produced in pairs be and accelerated along the beam axis
 - MCP beam leaves cavity and is flowing through thick wall
 - Corresponding electrical current can be measured directly via its induced magnetic field

[Gies, Jaeckel, AR '06]

• Cavity and wall available

36

- Minicharged particles don't meet again behind the wall ⇒ no light shining through the wall
- Current-Through-a-Wall:
 - In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
 - MCP beam leaves cavity and is flowing through thick wall
 - Corresponding electrical current can be measured directly via its induced magnetic field

ACDC (Accelerator Cavity Dark Current):

- Cavity and wall available
- Measurement device available

[Gies, Jaeckel, AR '06]

- Minicharged particles don't meet again behind the wall ⇒ no light shining through the wall
- Current-Through-a-Wall:
 - In strong electric field of accelerator cavity, minicharged particles may be produced in pairs and accelerated along the beam axis
 - MCP beam leaves cavity and is flowing through thick wall
 - Corresponding electrical current can be measured directly via its induced magnetic field

ACDC (Accelerator Cavity Dark Current):

- Cavity and wall available
- Measurement device available

[Gies, Jaeckel, AR '06]

- Minicharged particles don't meet again behind the wall ⇒ no light shining through the wall
- Current-Through-a-Wall:
 - In strong electric field of accelerator cavity, minicharged particles may -5.5 be produced in pairs $ahgg_{10} \epsilon_{-6}$ accelerated along the beam axis
 - MCP beam leaves cavity and is flowing through thick wall
 - Corresponding electrical current can be measured directly via its induced magnetic field

ACDC (Accelerator Cavity Dark Current):

[[]Gies, Jaeckel, AR in prep.]

5. Conclusions

- The report of the observation of a vacuum magnetic dichroism and birefringence by PVLAS has triggered a lot of theoretical and experimental activities:
 - Particle interpretations alternative to ALP interpretation: e.g. MCP
 - Models, which evade strong astrophysical and cosmological bounds on such particles, have been found. Require typically even more WISPs than just the ones introduced for the solution of the PVLAS puzzle
 - Decisive laboratory based tests of particle interpretation of PVLAS anomaly in very near future. More generally, experiments will dig into previously unconstrained parameter space of above mentioned models
- Experiments exploiting low energy photons may give information about fundamental particle physics complementary to the one obtained at high energy colliders