* 3rd Joint ILIAS-CERN-DESY Axion-
~ WIMPs

|| Chasing Axions to the
" | Quantum-Limit and

8l I Beyon
i 7 eyond

Steve Asztalos, LLNL

June, 2007



Phase 0 recap ADMX

osu Previous y
E /—_"L| H experiments Sn-1 987a
— L/
L/
. L/
100 — Current experiment (done) ¥
Axion models |

Time to complete
8 yrs (HEMTs)

@ »

“Power sensitivity” (arb. units)

| |
| 106 10-5 10-4 10-3
(250 MHz) M, (eV) (250 GHz)

e The current experiment is based on conventional
heterojunction technology (HEMTSs)

e The physical temperature is T = 1.3 K, and the total
system noise temperature is Tg 2 3K




How Can We Improve? ADMX

* Present experiment acquires data at a rate of ~ 1
MHz/day.

» 10+ years we’ve managed to acquire an octave
of data (478 < f <810 MHz).

» Allowable phase space spans 300 MHz to at least
300 THz




Review search parameters ﬂ@MX

e Recall the search rate at fixed SNR:

dv B4“

— OC

dt TS

- Increase B,V; or decrease Ty
@ bigger B: 10-12 Tesla $5M+

e *bigger V: larger center bore magnet

=) esmaller T,: better amplifiers!




Lower temperature approache_s ﬂ@MX

e Consider what a factor of 10 In
Improvement in temperature buys
— Factor of 100 in scan speed, or a
— Factor of 10 In sensitivity

* Noise in our first stage Ga-As FET comes
from channel impurities (scattering) and
does not fall much below T, ~ 14K




New thread: Non-classical photon states ADMX

* Any detector of electromagnetic radiation must obey the
number-of-quanta, phase-of-radiation uncertainty relation:

An-Ag=>1

« Amplifiers which interact with electromagnetic radiation in a
classical manner obey the above relationship with equal
uncertainty contribution from each factor. The quantum object
(photon) is said to be In a coherent state.

« Amplifiers which interact with electromagnetic radiation in a
non-classical manner also obey the above relationship, but non
necessarily with equal uncertainty contributions from each
factor. The guantum object (photon) is said to be in a
squeezed state.




Quantum limit or not

* When an amplifier is forced to behave in a
classical manner it must obey the standard

guantum limit:
ho =k T

e SQUIDs, HFETS and the like must obey the
standard quantum limit

 When an amplifier no longer behaves as such it is
not bound by the standard quantum limit.

« Photomultipliers, bolometers, etc do not have to
obey the standard quantum limit.



Next generation of RF cavity based experiments

* The next generation of RF cavity-based
axion detection experiments take different
approaches to amplification.

« CARRACK uses Rydberg atoms for their
detectors and thus evades the guantum limit.



CARRACK: Cosmic Axion Research with
Rydberg Atoms in resonant Cavities in K otod DM X




Rydberg-atom single-quantum detectors  ADMX

«Atoms with a single electron promoted to a large principal
quantum number, n >> 1. Superposition of Rydberg states
yields “classical atoms” with macroscopic dimensions (e.g. ~ 1
mm).

e Potential for highly sensitive microwave photon detectors (“RF
photo-multiplier tubes”) realized by Kleppner and others in
the1970’s. The axion experiment is an ideal application for
Rydberg atoms:

e Large transition dipole moments <n il‘el" n> oC n2a0

. Long liftetimes r. ocn® (I<<n); 7, ~1msec
~E, =2R/n?; AE,,~7GHz

« Transitions span microwave range AE, =E, ,



Rydberg single-quantum detection (S. Matsuki
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M. Tada et al., Phys. Lett. A (accepted)




Selective field ionization

Y. Kishimoto et al., Phys. Lett. A 303 (2002) 279

M. Tada et al., Phys. Lett. A 303 (2002) 285
R. Bradley et al., Rev. Mod. Phys. 75 (2003) 777
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Qur future — SQUID amplifiers

ADMX

- The basic SQUID amplifier is

a flux-to-voltage transformer

« SQUID noise arises from

Nyquist noise in shunt
resistance

— Thus it scales linearly
with T

- However, SQUIDs of

conventional (inductively
coupled) design are poor
amplifiers above 100 MHz



Phase | of the Axion Dark Matter eXperiment

e ADMX Phase | relies on SQUID based
amplification, and iIs thus quantum-limited.

* However, the temperature at which this
limit is attained Is around 40mK.



GHz SOQUID amplifiers ADMX
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Varactor tuning of microstrip SOQUID

ADMX
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SQUIDs drive our Phase | upgrade ADMX

SQUID @
amplifier ...m...‘
S

Field compensation
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What improvements did we make
to our Phase 0 design?

* Reduce field in vicinity of SQUID amplifier
— Physically move
— Buck fringe field
— Shield amplifier
e Replaced “wet” system with “dry” system
— Reduce heat load on experimental insert

e Shrunk cavity dimensions
— Access higher frequencies
— Better physical fit within main magnet bore



High-OQ cavity ADMX

e AXion conversion scales
with Q — the cavity
quality factor

* The quality factor itself is

Inversely dependent on
the skin depth

e The skin depth is
Inversely proportional to
frequency

.« Q~51~f




High-Q cavity ADMX
At high frequencies and

low temperatures the
classical skin depth is
replaced by the
anomalous skin depths « (wo)™* | &
*Since this dimension is |
on order of 20 microns, no
need to make entire cavity
out of high conductivity
material

*As with LINAC cavities we plate Cu on a
metal that is more readily machinable. Don’t
want large conductive masses, either, since
this leads to eddy current dissipation




High-Q cavity ADMX

* The plating process is called UBAC and
employs oxygen-free copper (99.99% pure
Cu with 0.0005% O to improve
conductivity)

 With this level of attention we manage to
achieve near-theoretical Q-values (~2x10°
unloaded at 1.3K) |




Main Magnet

« Our main magnet is constructed from Nb;Ti —a
Type |1 superconductor

B, = B, (0) 1{1)

 With T, ~ 10K and B.(0) ~ 15T, at an operating
temperature of 4K B.~ 12T. The 226 A (max) that
IS needed to fully charge the magnet comes
nowhere close to generating this critical field




Main magnet

e The stored energy Is more problematic
e U/NV=1/2LI2L ~500H and | ~ 226A

e Should the magnet coils go normal ~ 12MJ needs
to be dissipated. We have two diode protection
circuits to safely release this energy: cold and
warm. The cold diodes conduct ~ 5V and a quench
would quickly vaporize all the LHe.



Bucking Coil

Whereas our HFET amplifiers work admirably in
a 6T field (though orientation effects are critical),

the SQUID cannot function if 6B Is an appreciable
fraction of a Weber

8D = 8BA << 1x10°15,
thus 6B < 10nT

Must buck the field in the vicinity of the SQUID
by 8 orders of magnitude
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* Phase | will incorporate SQUIDs for the first time

¢ The physical temperature will remain T = 1.3 K, but the system
noise temperature will be Ts ~ 1.5 K

* We will scan at the current sensitivity faster by x4!
¢ We will scan new mass range and publish physics

* R&D will open up the next decade in mass

P02552-ljr-u-023



Concept for SQUID amplifiers towards

100 peV (25 GHz)

ADMX

The ‘In-Line’ SQUID Amplifier

Top electrode with

Dielectric layer Josephson junctions
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There is strong interest world-
wide to develop X-band SQUIDs
as IF amplifiers for IR and sub-
mm astronomy

« SQUID amplifiers should be made to

work >10 GHz
— Josephson frequency >100 GHz

» The ‘in-line’ SQUID design appears

attractive

— The SQUID loop consists of two
piggy-back superconducting
strips, closed by the Josephson
junctions on either end

» The key question is how to couple to it

— A close-by microstrip line will be
tried first

+ UCB R&D effort will increase, as

amplifier production winds down
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The Phase Il upgrade (planned) ADMX
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+ The Phase Il upgrade will add a dilution refrigerator
— T~100 mK, Ts £200 mK

+ We will achieve definitive sensitivity over the lowest decade in
mass

+ And — depending on our R&D success — we will finally cover
2/3 of the mass range

P02552-ljr-u-024
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