Precision ellipsometry at PVLAS

Marin Karuza
University of Trieste and INFN - Trieste

Outline

- Some photos
- An introduction to the ellipsometry
- Precision measurements results (magnetic birefringence in gases)

Polarizzazione del Vuoto con LASer

- Focused on a general study of the vacuum in the presence of a megnetic field
- Resonant FP cavity for large amplification factor (> 50 000)
- Large magnetic field (tested up to 7 T)
- Rotating cryostat allows high modulation frequency of the magnetic field (up to 0.5 Hz)
- Optical system mechanically decoupled from the surrounding and rotating systems

First view of the apparatus

• Legnaro site (Italy)

Complete apparatus

• Apparatus with aluminum access structure

The floor @ 360 degrees

• Control "room", apparatus, power supply

Lower optical bench

• Light preparation and injection in the cavity

Upper optical bench

• Light detection and signal acquisition

Photos #1

• Flange with mirror holder and mechanical feedthrough, test cavity and resonant modes

Photos #2

• Cryostat and control "room"

Marin Karuza – PVLAS Coll.

Measurement run procedure

- Preliminary operations
 - Precooling with LN2
 - Cooling and filling with LHe
- Measurement phase
 - LHe refill
 - Magnet energized
 - Closing coil circuit and connection removal
- Data acquisition
 - Photodiode current and control signals
 - Triggers used to reconstruct the absolute direction of the magnetic field
 - Fourier spectrum of the PD current at twice the rotation frequency signal

Experimental apparatus

- Ellipsometer
- Measures changes in light polarization
 - Static detection impossible

$$I = I_0(\sigma^2 + \psi^2)$$

Experimental apparatus

- High sensitivty heterodyne ellipsometer
- Measures changes in light polarization due to magneto-optical properties of the sample
- Signal dependence:
 - magnetic field intensity
 - path length in the magnetic field region
 - $\overline{-}$ Angle between light polarization and field $2\Theta(t)$

Experimental apparatus

• Spectrum example and frequency components

of interest

Frequency	Intensit	y/l _₀ Phase
$2\omega_{SOM}$	${\boldsymbol{\eta}}_0^2$	$2\theta_{SOM}$
$\omega_{SOM} \pm 2 \omega_{MAG}$	$\eta \psi \frac{2F}{\pi}$	$\theta_{SOM} \pm 2 \theta_{MAG}$

Cotton – Mouton effect in He gas

Experimental apparatus - scheme

- Main parameters of the apparatus
- Magnet
 - dipole, 6 T, temp. 4.2 K, 1 m field zone
- Cryostai
 - rotation frequency ~300 mHz, sliding contacts, warm bore to allow light propagation in the interaction zone
- Laser
 - 1064/532 nm, frequency-locked to the F.-P.
- Cavity
 - Fabry-Perot optical cavity
 - 6.4 m length, finesse ~100000, optical path in the
 - interaction region ~ 60 km
- Heterodyne ellipsometer
 - ellipticity modulator (Stress Optical Modulator –
 SOM) and high extinction (~10-7) crossed polarisers
 - time-modulation of the effect
- Detection chain
 - photodiode with low-noise amplifier
- DAQ
 - demodulated at low frequency and phase-locked to the magnetic field instantaneous direction
 - high sampling frequency direct acquisition

Cotton – Mouton effect in He gas

- Cotton Mouton effect in He gas
 - Stability of the apparatus (measurements in 1 year)

theory η 1.0287

experiment

0.81±0.04

$$\Delta n = \frac{B^2 p}{4\epsilon_0} \frac{\Delta \eta}{kT}$$

- Cotton Mouton effect in N₂ gas
 - Amplification factor control

$$\theta_{N2} = 195^{\circ}$$

$$\Delta n_u(N_2) = -(2.4 \pm 0.1) \cdot 10^{-13}$$

With cavity $\tau = 510 \,\mu\text{s}$, d = 6.4 m, B = 5.0 T, p = 0.5 mbar $\psi = 3.77 \cdot 10^{-4}$

$$N=2\frac{\tau \cdot c}{d}=47800$$

MEASURED

EXPECTED

$$N = 48150$$

Without cavity,
$$B = 5.3 T$$
, $p = 85.7 mbar$

$$\psi = 1.52 \cdot 10^{-6}$$

Cotton – Mouton effect in noble gases

Gas	$\Delta n_{_{U}}$ (T ~ 290 K, λ = 1064 nm)
Xenon	$(2.44 \pm 0.22) \cdot 10^{-15}$
Kripton	$(8.61 \pm 0.35) \cdot 10^{-15}$
Helium	$(1.75 \pm 0.07) \cdot 10^{-16}$

2003, 2004	2005	2006
IR, 1064 nm, 100 mW	Green, 532 nm, 100 mW	IR, 1064 nm, 800 mW
 Ellipsometer performing properly Published precise mea- surement on Cotton – Mouton effect 	 Ellipsometer performing properly Published precise mea- surement on Cotton – Mouton effect 	 Ellipsometer performing properly